読者です 読者をやめる 読者になる 読者になる

Knowledge As Practice

JAIST(東京)で Transformative Service Research に取り組んでる社会人大学院生の研究・勉強メモ

【追記あり 7/26】『基礎からのベイズ統計学』 5日目(飛び飛びで読んでます)

『基礎からのベイズ統計学』5日目から、第3章に入りました。46~56ページを眠気と闘いながら読み進めました。いくつか重要な単語が出てきています。  

  • 事前分布
  • 事後分布
  • MAP推定量(Maxium a posteriori=事後確率最大値)
  • 信用区間
  • 自然共役事前分布
  • 無情報的事前分布
  • 局所一様事前分布

 
「MAP推定量」という言葉はどこかで聞いたことがあって、漠然と知っていたのですが「事後分布のモードを推定値とする」という説明を見て、なんとか理解できました。

 
この本では、信用区間に「確信区間」という単語が使われています。「信頼区間と信用区間」よりは「信頼区間と確信区間」のほうが区別がつきやすいですね。でも、あまり確信区間という言葉は見ませんので、信用区間のほうに慣れようと思います。

 
51ページはちょっとわからなかった…。どこから  p q の数値が決まったのか理解できず。これはもう表から自動的にわかるものだとむりやり納得して先に進んでしまいました。

 
だんだん本格的っぽく、そして難しくなっています。だいたい10ページごとが自分にはいいペースのようです。

基礎からのベイズ統計学: ハミルトニアンモンテカルロ法による実践的入門

基礎からのベイズ統計学: ハミルトニアンモンテカルロ法による実践的入門

【追記(2015年7月26日)】
上のほうで「51ページがちょっとわからなかった」と書いたところ、twitter 経由でアドバイスをいただきました。前章の(2.48)式と(2.46)式を素直に適用すれば解けました。同じところの

 V(X) = 0.016\ (= 0.8 \times 0.2)と推定され

というところで混乱したのかも(まちがい?)。 0.8 \times 0.2 0.16 ですし。

クリエイティブ・コモンズ・ライセンス
この 作品 は クリエイティブ・コモンズ 表示 - 継承 4.0 国際 ライセンスの下に提供されています。