読者です 読者をやめる 読者になる 読者になる

Knowledge As Practice

サービスマネジメント・Transformative Service の研究をしている社会人博士後期課程学生のブログ。

R を使うための Jupyter notebook インストールメモ

統計分析 社会人博士

【2016年9月27日追記あり(いちばん下)】

--
土曜と日曜(2016年9月24日・25日),石川・品川の人たちと合宿に参加しました。2日目に3時間ほどのRの実習をする機会に恵まれ,つたないながらファシリテーター的な役割を務めました。ゼミは多国籍チーム(4カ国)なので,スライドは英語で,しゃべりは日本語中心*1

 
RStudio を使ってやってみたところ,起動画面がぱっと見で複雑そうな印象を与えるかもしれない,とふと思いました(実際,起動した瞬間に参加者から「あ,なんか難しそう」という空気が広がったような。)。

 
もう1つの可能性として,jupyter notebook(じゅぴたーのーとぶっく)があるかなと思いインストール。注意点と手順を2ステップで半年後・1年後の自分のためにメモしておきます。mac 向け。

 

【ステップ1】

↓の1〜6.を実行。5.のとき anaconda のバージョンは最新のものにした。

qiita.com

 

【ステップ2】

↓に従って,jupyter notebook をインストール。

Installation · IRkernel

 
無事,jupyter notebook で R が使えるようになりました。でも,初心者向け R 実習に使うには厳しいです。理由は2つ。インストールが難しい(っていうか,面倒。時間もかかる)のと,コードの補完機能がないから(あれは初心者には便利のようです)。

 
とは言え,画面はスッキリして威圧感ない。なんか出力結果に罫線があるし,見やすい。個人的には好き。

f:id:hikaru1122:20160926022201p:plain

 
そしてここまで書いて気付いた。 R notebookっていう選択肢があるじゃないか。また今度の機会にしよう・・・。

 
●参考

speakerdeck.com

 

【追記1】

ターミナルで毎回 jupyter notebook と打つのは面倒なので,note というエイリアスを設定した。エイリアスの設定方法は次のページがわかりやすい。

qiita.com

【追記2】

コードの補完機能がない,と上で書きましたがウソでした。あります。コードを書いているときに,tab で出ます。

*1:第一声は英語にしたけど,英語と日本語を交えながらやっていたら,だんだんシン・ゴジラ石原さとみっぽくなってきた感じがしてやめた。

研究法の向き不向き

その他 社会人博士

昨日から「次世代知識科学特論」というすごい名前のクラスが始まった。JAIST人間力なんとかとか,大きなタイトルが好きみたい(私は嫌いじゃない)。どういう内容なのかは興味ある人はシラバスで検索してください。

www.jaist.ac.jp

 
この授業は,集中して質的な研究法も量的な研究法にも慣れましょう,という意図があるクラスのように思う。4日目と5日目は機械学習とかデータマイニングの講座になる。本来はドクターコース用だけど,今年からマスターの人たちにも開放されたらしい。そのため夜18時半〜22時までなのに,受講者がけっこう多い。

 
今日から2日間は文化人類学の先生によるエスノグラフィの演習。観察しながらメモを取るというのが難しい。途中であれこれと妄想してしまう。基本,量的なアプローチが好きだから,バランスを取るためにもエスノグラフィみたいなものもできるようになりたいと思う。でも,妄想が止まらない。きっとこの人の人生は〜とか,考えてしまう。

 
自分にそういう傾向があるということを知っただけでもよかったかも。ひょっとして,こういうアプローチには向いてないのかな・・・。まあ,まだ始まったばかりだし,明日もエスノグラフィの演習が続くので,少しずつ慣れていこう。在学中に1本,エスノグラフィで論文を書いてみたい・・・。

 
★ ★ ★
本日の進捗=1643文字

研究ノート代わりのブログ

その他 社会人博士

たまたま読んだ向後千春先生(ハンバーガー統計学・アイスクリーム統計学でおなじみ)のブログと『きょうから日記を書いてみよう 2』に刺激を受け(大人なら10分で読める本),少しずつ更新頻度を上げてみる*1

 
kogo.hatenablog.com

 

きょうから日記を書いてみよう〈2〉日記をスラスラ書く方法

きょうから日記を書いてみよう〈2〉日記をスラスラ書く方法

 
『きょうから日記を〜2』を読んで得たのは次の2つ。

 
1.想定読者は未来の自分
→これならブログを研究ノートの代用にもできそう。
2.オチをつけない
→これなら気軽。どうせ想定読者は未来の自分だし。

 
さて,久しぶりに以前通っていた社会人大学院のゼミにお邪魔した。今年の現役の社会人学生もテーマ決めに悩んでいるようで,「思ったより楽にテーマが決まっていた自分はラッキーだったのかも」と思った次第。

 
在籍時はいろいろあって結局,管理会計が専門のベテラン先生に指導を受け,修論相当の論文を書いた。専門はぜんぜん違っても,一流の研究者からの指摘は的確で,社会科学の論文としてはそれなりのものができたと思う。

 
現在,博士後期課程で指導を受けているのはイケイケの若手の先生。研究進捗を報告しているとき,不明点があるときは鋭くポイントを突いてくれる。ベテラン研究者と若手研究者の両方から指導を受けた(いる)経験はどこかで活きてくると思いたい。

 
★  ★  ★
今日の研究進捗=693文字

*1:筆をにぶらせないために書く,というのも1つの理由。

統計的因果推論の勉強会 第4回を開催しました!

統計的因果推論

毎月下旬恒例,統計的因果推論勉強会(第4回)を開催しました。今回の範囲は宮川本 第4章と星野本 第3章「IPW推定量」のところ。スライドはこちらです。

 
speakerdeck.com

 
口頭での説明を加えて進めています(スライドだけではいろいろ不足しているかと)。今日は宮川本と星野本以外に,岩波データサイエンス第3巻も使っています。ちゃんと買って参加してくれる人も嬉しい限り。また,"Causal Inference in Statistice: A Primer" も使いました。

 
宮川本も星野本もどんどん難しくなっている・・・。1ヶ月に1度なので,傾向スコアがなんだとか,反事実がどうだとか,みんなで思い出しながらやりました。やっと傾向スコアのイメージが全体で共有できたように思います。

 
それにしても,IPW推定量はまだまだピンとこない。腹落ちするのに,もう少し時間がかかりそう。そして,数学の勉強も必要・・・。先は長い。

 
今回,メインに使用した本の一覧はこちら。

Causal Inference in Statistics: A Primer

Causal Inference in Statistics: A Primer

岩波データサイエンス Vol.3

岩波データサイエンス Vol.3

統計的因果推論―回帰分析の新しい枠組み (シリーズ・予測と発見の科学)

統計的因果推論―回帰分析の新しい枠組み (シリーズ・予測と発見の科学)

 
岩崎版『統計的因果推論』もIPWについて,1章分扱っています。やっぱり難しい・・・。

統計的因果推論 (統計解析スタンダード)

統計的因果推論 (統計解析スタンダード)

 
森田『実証分析入門』の16章と17章は統計的因果推論の復習にオススメ。

統計的因果推論の勉強会 第3回を開催しました!

統計的因果推論 統計分析 参加報告

最近,ブログは月1更新。仕事と学生はなんとか両立できていると信じたい・・・。

 
さて,先日,「経営学統計学エンドユーザー*1のための統計的因果推論 勉強会」第3回を実施しました。これで3回目。クローズド*2

 
今回の内容は宮川本と星野本の第3章です。宮川本はパス解析,星野本は傾向スコアについて。星野本は核心に入ってため,難しく,一気に第3章全部はつらいため,60〜69頁をやりました。数式が増えて,本当につらい。

 
宮川本は構造方程式モデリングSEM)の話を中心に組んでみました。みんなが SEM に慣れているわけではないので3つ実例を見ながら進行。また,みかけの相関と選択バイアスについても復習をしました。

 
ちなみに因果ダイアグラムを用いたみかけの相関と選択バイアスについては『岩波DS Vol.3』の中の「相関と因果と丸と矢印のはなし はじめてのバックドア基準」が感動的にわかりやすいです。これは次回の勉強会でみんなで読んでみようと思っています。

岩波データサイエンス Vol.3

岩波データサイエンス Vol.3

 
スライドはこちらです。

 
speakerdeck.com

 
なお,星野本第3章の詳解は↓に載っています。私にはかなり難しくて,理解が厳しい・・・。 d.hatena.ne.jp

 
また,こちらのブログ「調査観察データにおける因果推論」のシリーズも詳しく解説されています。 smrmkt.hatenablog.jp

 
星野本でやれることはやったと思い,『岩波DS Vol.3』を読み直してみるのがいい気がしてきました。次回は岩波DSを題材にもう少し傾向スコアについて勉強を進めていこうと思います。

*1:主に文系で数学的な内容を学んでいくよりは,実際に社会科学の論文を読み書きするできるようになるのが目的

*2:会場が関係者しか入れないところなので

統計的因果推論の勉強会 第2回を開催しました!

統計的因果推論 統計分析

宮川本と星野本の第2章が今回の内容です。毎月それぞれ1章ずつ読み進めています。参加者は私を含めて7人くらい。減ると思って心配していましたが,前回より増えてよかったです。

 
使用したスライドはこちらです。

 
speakerdeck.com

 
第2章はどちらも導入部の終わり,といった感じです。キーワードは

  • 潜在反応モデル(反実仮想モデル)
  • 共変量
  • 傾向スコア

 
でしょうか。例題として,簡単な傾向スコアによる分析もやってみました。R 仲間が増えないかな。我々は文系統計学エンドユーザーなので,数式のところは理解が不足してしまいます。宮川本も星野本も,読んでいて「?」なところは多く出てきます。それでも,統計的因果推論は今後の役に立つかも,ということでコツコツ学んでいます。

 
今回は「強く無視できる割り当て条件(強い意味での無視可能性)」への理解がイマイチでした。どうして傾向スコアで条件付ければ交絡のことを考えなくていいのか,というのがボンヤリしています。

 
きっとこれは星野本3章を読んでいけば解決できるはず,という期待を持ちながら来月に向けて勉強を続けていきます。

 
P.S.
スライドのアップ先を Slideshare から Speaker Deck に移りました。SlideshareMac で作ったPDFで日本がうまく表示されなかったので(解決策はあるみたいですが,面倒ですね)。

統計的因果推論の勉強会の1回目を開催しました!

統計的因果推論 統計分析 参加報告

2016年5月28日に統計的因果推論のクローズドな勉強会を開催しました。参加者は5名でした。私を含め全員が非専門家ですので「学び合い」がキーワードです。

 
対象は下のスライドにあるとおり,経営学を学ぶ統計学エンドユーザーです。進行は,私が宮川本と星野本を1章ずつまとめたものを発表し,それについて不明点の質疑応答を行うというようにしました。印象としては,潜在反応モデル/反実仮想モデルが腑に落ちるかどうかが重要のようです。

 

www.slideshare.net

 
やはり,こういうのは発表する人がいちばん勉強になるような気がします。いろいろと質問を受けて,刺激にもなりました。2冊とも第1章はガイダンスみたいなものなので,本番は翌月の第2章からです。来月もがんばります。

クリエイティブ・コモンズ・ライセンス
この 作品 は クリエイティブ・コモンズ 表示 - 継承 4.0 国際 ライセンスの下に提供されています。